MAC 1140 (Important theorems in sections 3.2 and 3.3)

The Remainder Theorem

When a polynomial $f(x)$ is divided by $x-\mathrm{c}$, then the remainder is $f(\mathrm{c})$.
Example: $f(x)=2 x^{3}-3 x^{2}+4$
You can find $f(3)$ by dividing $f(x)$ by $(x-3)$: $\quad 3 \left\lvert\, \begin{array}{cccc}2 & -3 & 0 & 4 \\ 6 & 9 & 27 \\ - & & & 2\end{array}\right.$

$$
f(3)=\mathbf{3 1}
$$

remainder

The Factor Theorem

$(x-\mathrm{c})$ is a factor of $f(x) \Longleftrightarrow \mathrm{c}$ is a zero of $f(x)$
Example: If a function has factors: $(x-5),(x-2)$, and $(x+3)$, then the function has zeros: 5,2 , and -3

Likewise, if a function has zeros: $4,-2$, and $3 \leftarrow$ mult. 2 , then the function has factors: $(x-4)(x-(-2))(x-3)(x-3)$

$$
=(x-4)(x+2)(x-3)^{2}
$$

The Fundamental Theorem of Algebra

Every polynomial equation (of degree one or higher) has at least one solution. (In other words, you can't write a polynomial equation that doesn't have a solution.)

Example: These are guaranteed to have a solution because they are polynomial equations: $\quad 3 x^{4}-5 x^{3}+2 x-5=0,5 x^{3}-\frac{2}{3} x+8=0$

These are not guaranteed to have a solution because they are not polynomial equations: $\frac{3}{x}+5=0, \quad 2 \log (3 x)=0$

Linear Factors Theorem

A polynomial function, of degree n, where $n \geq 1$, can be factored as the product of n linear factors.

$$
\text { Example: } \quad \begin{aligned}
g(x) & =2 x^{4}+5 x^{3}+4 x^{2}+5 x+2 \quad \leftarrow \mathrm{a} 4^{\text {th }} \text { degree function } \\
& =(x+2)\left(2 x^{3}+x^{2}+2 x+1\right) \\
& =(x+2)\left(x^{2}(2 x+1)+1(2 x+1)\right) \\
& =(x+2)(2 x+1)\left(x^{2}+1\right) \\
& =(x+2)(2 x+1)(x-i)(x+i) \leftarrow 4 \text { linear factors }
\end{aligned}
$$

n-Root Theorem

Every polynomial equation of degree n, where $n \geq 1$, has exactly n roots.
(A root of multiplicity k is counted k times.)

Conjugate Pairs Theorem

If $a+b i$ is a solution of a polynomial equation, then its conjugate, $a-b i$, is also a solution of the equation. (In other words, imaginary solutions come in conjugate pairs.)

Theorem

If $a+b \sqrt{c}$ is a solution of a polynomial equation (which has rational coefficients), then its conjugate, $a-b \sqrt{c}$, is also a solution of the equation.
*note: This only applies to solutions of the form $a \pm b \sqrt{c}$, not to solutions of the form $a \sqrt[3]{b}, a+b \sqrt[4]{c}, \sqrt[5]{a}$, etc.

