MAC 1140 (Important theorems in sections 3.2 and 3.3)

The Remainder Theorem

When a polynomial f(x) is divided by x - c, then the remainder is f(c).

Example: $f(x) = 2x^3 - 3x^2 + 4$

You can find $f(3)$ by dividing $f(x)$ by $(x-3)$:	3	2	-3	0	4
]	_	6	9	27
		2	3	9	31
f(3) = 31					
	remainder				

The Factor Theorem

(x-c) is a factor of $f(x) \iff c$ is a zero of f(x)

Example: If a function has factors: (x - 5), (x - 2), and (x + 3), then the function has zeros: 5, 2, and -3

Likewise, if a function has zeros: 4, -2, and $3 \leftarrow \text{mult. } 2$, then the function has factors: (x - 4)(x - (-2))(x - 3)(x - 3) $= (x - 4)(x + 2)(x - 3)^2$

The Fundamental Theorem of Algebra

Every polynomial equation (of degree one or higher) has at least one solution. (In other words, you can't write a polynomial equation that doesn't have a solution.)

Example: These are guaranteed to have a solution because they are

polynomial equations: $3x^4 - 5x^3 + 2x - 5 = 0$, $5x^3 - \frac{2}{3}x + 8 = 0$

These are not guaranteed to have a solution because they are

not polynomial equations: $\frac{3}{x} + 5 = 0$, $2\log(3x) = 0$

Linear Factors Theorem

A polynomial function, of degree *n*, where $n \ge 1$, can be factored as the product of *n* linear factors.

Example:
$$g(x) = 2x^4 + 5x^3 + 4x^2 + 5x + 2 \quad \leftarrow a \ 4^{th} \ degree \ function$$

 $= (x+2)(2x^3 + x^2 + 2x + 1)$
 $= (x+2)(x^2(2x+1)+1(2x+1))$
 $= (x+2)(2x+1)(x^2+1)$
 $= (x+2)(2x+1)(x-i)(x+i) \quad \leftarrow 4 \ linear \ factors$

n – Root Theorem

Every polynomial equation of degree *n*, where $n \ge 1$, has exactly *n* roots. (A root of multiplicity *k* is counted *k* times.)

Conjugate Pairs Theorem

If a+bi is a solution of a polynomial equation, then its conjugate, a-bi, is also a solution of the equation. (In other words, imaginary solutions come in conjugate pairs.)

Theorem

If $a+b\sqrt{c}$ is a solution of a polynomial equation (which has rational coefficients), then its conjugate, $a-b\sqrt{c}$, is also a solution of the equation.

*note: This <u>only</u> applies to solutions of the form $a \pm b\sqrt{c}$, not to solutions of the form $a\sqrt[3]{b}$, $a + b\sqrt[4]{c}$, $\sqrt[5]{a}$, etc.